

DAWD #9

The Tourist Guide to Ardour Data Structures

Second Things First

● IS-A
● If Foo IS-A Bar, then Foo was derived from Bar

● HAS-A
● If Foo HAS-A Bar, then Foo has at least one

member that is a Bar
● HAS-A-PTR

● If Foo HAS-A-PTR, then Foo has at least one
member that points to (“references”) a Bar

This Pointer Stuff

● If foo points at bar, what happens when/if bar
is deleted?

Track* foo = bar;

delete bar;

foo->set_record_enabled (true); // what happens?

This Pointer Stuff 2

● We want foo to know that bar was deleted OR
● We want to stop bar from being deleted as long

as foo points at it

Shared Pointers

● A pointer with a reference counter
● Every time a copy of the pointer is made (or

assigned), the reference count increases
● Every time a pointer is deleted, the reference

count is deleted
● The pointed-at object is deleted when the

reference counter goes to zero
● boost::shared_ptr<T>

Foo* foo = new Foo ();
return shared_ptr<Foo> (foo);

Shared Pointer
A

Shared Pointer
B

Object
Reference

Count

Atomic operations
are used to change
the reference count
(no mutexes/locks)

But ...

● Anonymous notifications

sigc::signal<void> SomethingChanged;

SomethingChanged.connect (mem_fun (aFoo, &Foo::handle_changes));

sigc::signal<void> SomethingChanged;

SomethingChanged.connect (mem_fun (aFoo, &Foo::handle_changes));

sigc::signal<void> SomethingChanged;

SomethingChanged.connect (bind
 (mem_fun (aFoo, &Foo::handle_changes), someSharedPtr));

GOOD:

BAD:

Why Is This Bad?
● The connection is stored in a “hidden” data

structure (the “closure”)
● There is now a extra copy of the shared pointer

● We can delete every other instance of the
shared pointer, but the reference count will never

go to zero
● Object is never deleted!

struct hiddenImplicitClosure_1829291 {
 Foo* theFoo;
 void (Foo::*)(void) fooMethod;
 shared_ptr<Something> theExtraArgument;
}

How to solve this?

● Never use shared pointers when connecting to
notifications of some kind

● Use “weak pointers”
● Still need to solve the general issue – how do
we arrange for destruction of objects in an MVC

system that uses shared pointers?
● Shared pointer design assumes that objects will

be deleted when the time is “right”
● MVC tends to require references from V/C to M

● How do we (e.g.) delete a track and actually
make sure it gets deleted?

The Basic Object Model

ThingWithGoingAway Stateful

Destructible

StatefulDestructible

“a thing that has state, and signal that can be emitted when
it is destroyed, and whose destruction will cause it be disconnected
from all sigc++ signals it is connected to”

“a thing that has get_state()
and set_state() methods”

How To Destroy Something

● Add a method: drop_references()
● This method emits GoingAway

● Anyone with shared_ptr's to this object must be
connected to GoingAway

● On receipt of signal, destroy all shared_ptrs to
the object

● At this point, the reference count should be close
to zero

● Delete your own shared_ptr
● Reference count goes to zero, object is deleted

One more thing: Shiva

● Sometimes we need to “couple” object
destruction together

● “If A is destroyed, destroy B; if B is destroyed,
destroy A”

● This is hard to do with either A or B
● Introducing Shiva, the Hindu god of chaos and

destruction
● A “shiva” is an object that notices the destruction

of 1 or both of two other objects; destroys the
other object, and then destroys itself

Ardour Data Structures

● Top Down
● Session is the top

ARDOUR::Session

● Fundamentally, a Session is just a collection of
other things

● Routes (tracks, busses)
● Locations

● Tempo map
● Non-JACK-related, per-session parameters

● Undo/Redo history
● MIDI ports

● Slaves
● Transport state & controls

ARDOUR::AudioEngine

● Fundamental abstraction of audio I/O and audio
processing

● Hides JACK (could hide ASIO, CoreAudio)
●Session HAS-A-PTR to AudioEngine (and vice

versa)
● Owns all “ports” (JACK, MIDI, private ardour-

only ports)
● Provides transport time information

ARDOUR::IO

● An abstract class for objects that do input and
output (audio and/or MIDI)

● Each IO has:
● Input port(s)

● Output port(s)
● Gain

● Panning (distributing signals to the output ports)
● Automation state

● Metering

ARDOUR::Route

● The basis of all signal flow in Ardour
● Route IS-A ARDOUR::IO

● Session HAS-A-PTR to all Routes
● A Route adds the following to ARDOUR::IO

● Redirects
● Mute, Solo

ARDOUR::Redirect
● Normal signal flow through a Route is:

● Input -> gain -> pan -> output
● Anything which changes this a “redirect”

● Abstract class
● 3 concrete classes: PluginInsert, PortInsert,

Send
● Inserts deliver the signal to some object, then
insert the output from the object back into the

Route
● Sends have no effect on signal flow within the

Route
● Has an anonymous pointer to a “GUI”

ARDOUR::Bus

● Doesn't exist
● A “bus” literally IS-A ARDOUR::Route (not

derived, just a Route)

ARDOUR::Track

● Track IS-A Route
● Track HAS-A Diskstream

● Almost identical to Route but adds:
● Record-enable

● Playback data can come from disk, not just input
ports

ARDOUR::PluginInsert

● PluginInsert IS-A Insert IS-A Redirect
● PluginInsert HAS-A Plugin(s)

ARDOUR::Plugin

● Abstract class
● Defines (virtual) interface

● Get/set parameters
● Configure number of input/output signals

● Get the name and other information
● connect_and_run ()

● Automation of parameters

Actual Plugin objects

● ARDOUR::LadspaPlugin
● ARDOUR::AUPlugin

● ARDOUR::VSTPlugin
● Each one implements the interface (API) defined

by ARDOUR::Plugin

Automation

● ARDOUR::ControlEvent: time (fractional
samples) value (double-precision float)

● ARDOUR::AutomationList HAS-A list of
ControlEvent

● Some AutomationLists HAVE-A ARDOUR::Curve
● Curve is an interpolator

● Changing automation data means modifying the
contents of an AutomationList, so AutomationList

provides cut/copy/delete/paste/move methods

2 Kinds of Automation
● 1) Sample-accurate “streaming” automation

● Relies on Curve::get_vector()
● Interpolates from the ControlEvents and returns
a vector of values that can be applied per-sample

● Used for gain & pan automation
● 2) Event automation

● These are handled by putting them in the
Session “event list”.

● Noticed during the JACK process() callback
● Subdivide the process() callback into N parts,

“implement” the event in between
● Used for transport control & plugin automation

t

Punch out

N

nframesnframes nframes

Process nframes-N
do punch out stuff
Process N frames

Controllable

● Anything that can be controlled by something
else

● 3 key methods:
● get_value()
● set_value()

● can_send_feedback()

Actual Controllables

● IO::GainControllable
● Plugin::ParameterControllable

● Route::ToggleControllable
● StreamPanner::PanControllable
● Track::RecEnableControllable

● Each one has a set_value() method that
does something different

MIDIControllable

● HAS-A Controllable
● HAS-A MIDI port

● Methods to start/stop “learning”
● Method to send feedback

● All Ardour plugin parameters are Controllables

ARDOUR::Diskstream

● A way to move data to/from disk
● Big (lock-free) ringbuffers

● HAS-A Playlist

ARDOUR::Playlist

● Playlist HAS-A list of Regions
● Session HAS-A list of Playlists

● Has methods to:
● Read (virtual)

● cut/copy/paste/partition/split
● Find regions at ...

● Note: data type agnostic
● AudioPlaylist handles audio data via read()

ARDOUR::Region

● An object defining data to be played back
● Session HAS-A list of pointers to Regions

● Region members: start,position, length
● Other properties: opaque, muted, sync position

● Methods to change length, positions
● Note: a Region defines its own position in a

playlist, which means that edit methods in Playlist
have to set this

● Abstract class, data type agnostic
● AudioRegion handles audio data

ARDOUR::AudioRegion

● AudioRegion IS-A Region
● AudioRegion HAS-A Source

● Adds gain envelope, fade in/out curves
● Methods to normalize, apply destructive

processing
● Constructed via RegionFactory because we only

want to refer to regions via shared pointers

ARDOUR::Source

● Abstract class
● A place to read data from (and possibly write it

too)
● Normally disk files but not required

● Data type agnostic
● AudioSource handles audio data

ARDOUR::AudioFileSource

● Abstract class
● Defines API for file based audio I/O (i.e. virtual

read/write methods)
● Handles peak file construction and access
● Concrete derived classes: SndFileSource,

CoreAudioFileSource
● These use other libraries (libsndfile,

ExtAudioFile) to actually implement audio file I/O
as necessary

Region 1
start=0
length=N
position=14

Region 18
start=23020
length=P
position=209191

File: /foo/bar/baz

0 L

File: /foo/bar/bass

0 M

Start=48493
position=191087

Playlist

48493

23020

14 191087 209191 Timeline
position

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

