
  

DAW Design & Implementation #8

Integrating Control Data
Model-View-Controller #1
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● The problem with control data
● Two different designs

● Dealing with specific protocols
● Model-View-Controller (MVC) design

● History
● Basics



  

What is control data?

● Protocol: MIDI, OSC, SKINI, whatever ...
● Content: performance data, transport control, 

state control (e.g. solo/mute/rec-enable)
● Intent: to change/specify the behaviour of the 
program (notes, sounds, recording or not, etc.)



  

The Problem With Control Data

● Performance data is intended to influence real 
time thread behaviour

● Its very nature is inherently real time: “play this 
note starting now”

● OK, not always (e.g. SKINI, CSound scores)
● Other types of data are intended to change 

program behaviour in a broader sense
● May involve changes that cannot be 

implemented in real time



  

Audio & MIDI

Audio Data (samples)

t1 t2

NoteOn (65,98,t1)
NoteOff (65,87,t1+80)
Controller(23,89,t1+242)
.
.
NoteOn(116,24,t1+1018)



  

Two Scenarios: #1



  

That's the old way

● Pros: no MIDI data handling in the audio thread
● Cons: all control is cross-thread

● Timing becomes an issue
● No clean separation of thread function

● Welcome JACK MIDI
● All MIDI data arrives in the “RT” thread (audio)



  

Two Scenarios: #2



  

Is this the new way?

● Pros: performance data is now arriving in the 
right thread

● Cons: other control data is arriving in the wrong 
thread

● We still need another thread...



  

The Answer (???)



  

Model View Controller Design

● A way to design programs
● Leads to good design

● Doesn't guarantee good design
● Invented/Discovered by Trygve Reenskaug

● First applied to Smalltalk (hello, supercollider)
T



  

MVC Basics

● Divide the program into 3 parts
● Model: represents (or is) the thing the user will 

observe and manipulate
● View: a way for the user to see some or all of the 

current state of the model
● Controller: a way for the user to change the 

current state of the model



  

MVC/DAW example

● Model: audio data, playlists, signal routing, gain, 
plugins, panning, parameters

● View: buttons, faders, switches, text display, 
graphs

● Controller: buttons, faders, switches, text entry, 
draggable graphs

● LESSON: in real apps, the View and the 
Controller are often hard to separate



  

A More Detailed Example: mute

● Trivial implementation: there is a button; when 
the user presses it, we mute the track, and the 

button shows the status
● So far, so good

● Now add MIDI/OSC control over mute
● What happens to the button when a MIDI control 

surface sends a “mute” message?
● Q1: where does the mute message actually 

arrive?



  

A More Detailed Example: mute

● Trivial implementation: there is a button; when 
the user presses it, we mute the track, and the 

button shows the status
● So far, so good

● Now add MIDI/OSC control over mute
● What happens to the button when a MIDI control 

surface sends a “mute” message?
● Q1: where does the mute message actually 

arrive?
● Q2: does the GUI only modify the state, or must 

it really just “show” it?



  

Mute #2

● In reality, the GUI is a View and a Controller
● There may be others (MIDI, OSC, or even 

multiple GUIs)
● Press a button: send a message to the Model to 

mute a track (Controller function)
● When model changes state, change the 
appearance of the button (View function)



  

MVC helpers

● Good MVC design requires a good way to notify 
Views of changes in the state of the Model

● Good notification systems will not understand 
the Model or the View (i.e. they have no 

semantics that are specific to the Model or View)
● Ideal: “anonymous notification”

● Model doesn't know who is listening
● View doesn't know anything except the signals 

to listen to and how to get the new state (e.g. 
muted or not muted)



  

MVC in Ardour

● libardour is the Model: contains the data 
structures (objects) for everything that Ardour 

actually does.
● libardour doesn't know anything about any user 

interfaces (GUI or otherwise)
● gtk2_ardour is the View/Controller

● Connections between the two are made using 
libsigc++

● Note: this is code-level separation, not process-
level separation (e.g. linuxsampler, sooperlooper)



  

Anonymous Notification

● Goal: a way to say “Something has changed” 
and have arbitrary code executed as a result

● Way to say it: a “signal”
● Arbitrary code: a “callback”

● When the “signal” is “emitted”, the callback is 
executed

● Pretty simple: the signal is just a list of pointers 
to functions. 

● Done!



  

Not So Fast!

● First, what happens if we want to know what 
object the change affected? (e.g. which track was 

muted)
● OK, add an argument that is passed to every 

function called
● Hmm, now we have type-safety issues (in C at 

least)
● Second, what happens if the View providing the 
callback wants to supply other information to be 

used when the callback is invoked?



  

Closures

● A very simple idea from Computer Science 
(aren't all the best ones?)

● A closure is just a packaging of a function with 
whatever other information is needed to call it (i.e. 

arguments)



  

Simple closure

typedef struct {

      void (*function)(int,int);

      int argument1;

      int argument2;

} closureForFunctionWith2IntArguments;

closureForFunctionWith2IntArguments c;

c.function = my_cool_function;

c.argument1 = 12;

c.argument2 = 0;



  

So ... 

● Just add a 1 or more to a list
● When “emitting” the signal, go through the list
● For each closure, call the function
● Hmm ... type problems
● Forget it and use libsigc++



  

libsigc++

sigc::signal<void> aSignal;

aSignal.connect (ptr_fun (a_function));



  

Libsigc++: adding arguments

sigc::signal<void> aSignal;

aSignal.connect (bind (ptr_fun (a_function), 12);

When “a_function” is called, it will be invoked as:

      a_function (12);



  

Libsigc++: signals with args

sigc::signal<void,float> anotherSignal;

anotherSignal.connect (ptr_fun (another_function));

When “another_function” is called, it will be 
invoked as:

      another_function (some floating point value);



  

Libsigc++: both kinds of args

sigc::signal<void,float> anotherSignal;

anotherSignal.connect(bind (ptr_fun(another_function), 1);

When “another_function” is called, it will be 
invoked as:

      another_function (some floating point value, 1);



  

Actual MVC within Ardour

● Objects have setter/getter functions to access 
model state

● They also have 1 or more sigc++ signals that will 
notify any connected objects about changes in 

state (e.g. mute, gain, rec-enable etc. etc)
● View uses getter functions to find out what to 

display
● Controller uses setter functions to change state

● View hears of the change via a signal



  

Key Ideas

● Model has no knowledge of Views or Controllers
● Controllers change state of a model

● Views update to reflect new state
● Allows multiple views – all will update when 

model changes state
● Allows multiple controllers

● Maximal (?) encapsulation of object behaviour
● Model internals can be changed without View or 

Controller being modified



  

Possible Alternatives

● MVC is good
● Would process separation be an improvement?

● Model in one process, VC in another
● Replace setter/getter methods with (e.g) OSC

● Replace sigc++ with (e.g) OSC
● Multiple GUIs

● Move GUI from machine to machine



  

Next Week

The Tourist Guide to Ardour Data Structures
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