

DAW Design & Implementation #8

Integrating Control Data
Model-View-Controller #1

Agenda

● The problem with control data
● Two different designs

● Dealing with specific protocols
● Model-View-Controller (MVC) design

● History
● Basics

What is control data?

● Protocol: MIDI, OSC, SKINI, whatever ...
● Content: performance data, transport control,

state control (e.g. solo/mute/rec-enable)
● Intent: to change/specify the behaviour of the
program (notes, sounds, recording or not, etc.)

The Problem With Control Data

● Performance data is intended to influence real
time thread behaviour

● Its very nature is inherently real time: “play this
note starting now”

● OK, not always (e.g. SKINI, CSound scores)
● Other types of data are intended to change

program behaviour in a broader sense
● May involve changes that cannot be

implemented in real time

Audio & MIDI

Audio Data (samples)

t1 t2

NoteOn (65,98,t1)
NoteOff (65,87,t1+80)
Controller(23,89,t1+242)
.
.
NoteOn(116,24,t1+1018)

Two Scenarios: #1

That's the old way

● Pros: no MIDI data handling in the audio thread
● Cons: all control is cross-thread

● Timing becomes an issue
● No clean separation of thread function

● Welcome JACK MIDI
● All MIDI data arrives in the “RT” thread (audio)

Two Scenarios: #2

Is this the new way?

● Pros: performance data is now arriving in the
right thread

● Cons: other control data is arriving in the wrong
thread

● We still need another thread...

The Answer (???)

Model View Controller Design

● A way to design programs
● Leads to good design

● Doesn't guarantee good design
● Invented/Discovered by Trygve Reenskaug

● First applied to Smalltalk (hello, supercollider)
T

MVC Basics

● Divide the program into 3 parts
● Model: represents (or is) the thing the user will

observe and manipulate
● View: a way for the user to see some or all of the

current state of the model
● Controller: a way for the user to change the

current state of the model

MVC/DAW example

● Model: audio data, playlists, signal routing, gain,
plugins, panning, parameters

● View: buttons, faders, switches, text display,
graphs

● Controller: buttons, faders, switches, text entry,
draggable graphs

● LESSON: in real apps, the View and the
Controller are often hard to separate

A More Detailed Example: mute

● Trivial implementation: there is a button; when
the user presses it, we mute the track, and the

button shows the status
● So far, so good

● Now add MIDI/OSC control over mute
● What happens to the button when a MIDI control

surface sends a “mute” message?
● Q1: where does the mute message actually

arrive?

A More Detailed Example: mute

● Trivial implementation: there is a button; when
the user presses it, we mute the track, and the

button shows the status
● So far, so good

● Now add MIDI/OSC control over mute
● What happens to the button when a MIDI control

surface sends a “mute” message?
● Q1: where does the mute message actually

arrive?
● Q2: does the GUI only modify the state, or must

it really just “show” it?

Mute #2

● In reality, the GUI is a View and a Controller
● There may be others (MIDI, OSC, or even

multiple GUIs)
● Press a button: send a message to the Model to

mute a track (Controller function)
● When model changes state, change the
appearance of the button (View function)

MVC helpers

● Good MVC design requires a good way to notify
Views of changes in the state of the Model

● Good notification systems will not understand
the Model or the View (i.e. they have no

semantics that are specific to the Model or View)
● Ideal: “anonymous notification”

● Model doesn't know who is listening
● View doesn't know anything except the signals

to listen to and how to get the new state (e.g.
muted or not muted)

MVC in Ardour

● libardour is the Model: contains the data
structures (objects) for everything that Ardour

actually does.
● libardour doesn't know anything about any user

interfaces (GUI or otherwise)
● gtk2_ardour is the View/Controller

● Connections between the two are made using
libsigc++

● Note: this is code-level separation, not process-
level separation (e.g. linuxsampler, sooperlooper)

Anonymous Notification

● Goal: a way to say “Something has changed”
and have arbitrary code executed as a result

● Way to say it: a “signal”
● Arbitrary code: a “callback”

● When the “signal” is “emitted”, the callback is
executed

● Pretty simple: the signal is just a list of pointers
to functions.

● Done!

Not So Fast!

● First, what happens if we want to know what
object the change affected? (e.g. which track was

muted)
● OK, add an argument that is passed to every

function called
● Hmm, now we have type-safety issues (in C at

least)
● Second, what happens if the View providing the
callback wants to supply other information to be

used when the callback is invoked?

Closures

● A very simple idea from Computer Science
(aren't all the best ones?)

● A closure is just a packaging of a function with
whatever other information is needed to call it (i.e.

arguments)

Simple closure

typedef struct {

 void (*function)(int,int);

 int argument1;

 int argument2;

} closureForFunctionWith2IntArguments;

closureForFunctionWith2IntArguments c;

c.function = my_cool_function;

c.argument1 = 12;

c.argument2 = 0;

So ...

● Just add a 1 or more to a list
● When “emitting” the signal, go through the list
● For each closure, call the function
● Hmm ... type problems
● Forget it and use libsigc++

libsigc++

sigc::signal<void> aSignal;

aSignal.connect (ptr_fun (a_function));

Libsigc++: adding arguments

sigc::signal<void> aSignal;

aSignal.connect (bind (ptr_fun (a_function), 12);

When “a_function” is called, it will be invoked as:

 a_function (12);

Libsigc++: signals with args

sigc::signal<void,float> anotherSignal;

anotherSignal.connect (ptr_fun (another_function));

When “another_function” is called, it will be
invoked as:

 another_function (some floating point value);

Libsigc++: both kinds of args

sigc::signal<void,float> anotherSignal;

anotherSignal.connect(bind (ptr_fun(another_function), 1);

When “another_function” is called, it will be
invoked as:

 another_function (some floating point value, 1);

Actual MVC within Ardour

● Objects have setter/getter functions to access
model state

● They also have 1 or more sigc++ signals that will
notify any connected objects about changes in

state (e.g. mute, gain, rec-enable etc. etc)
● View uses getter functions to find out what to

display
● Controller uses setter functions to change state

● View hears of the change via a signal

Key Ideas

● Model has no knowledge of Views or Controllers
● Controllers change state of a model

● Views update to reflect new state
● Allows multiple views – all will update when

model changes state
● Allows multiple controllers

● Maximal (?) encapsulation of object behaviour
● Model internals can be changed without View or

Controller being modified

Possible Alternatives

● MVC is good
● Would process separation be an improvement?

● Model in one process, VC in another
● Replace setter/getter methods with (e.g) OSC

● Replace sigc++ with (e.g) OSC
● Multiple GUIs

● Move GUI from machine to machine

Next Week

The Tourist Guide to Ardour Data Structures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

