

DAW Design & Implementation #5

Parallel Algorithms for Realtime Audio

Plan of Attack

● Presentation on CraSynth by Lukas
Kaser/Andreas Rothe

● ...waffle...
● High level task parallelism
● Low level data parallelism

High Level Task Parallelism

● Task parallelism: different operations performed
on distinct data in parallel

● Data parallelism: same operation performed on
“related” data in parallel

Directed Data graph

● Nodes or vertices connected together
● Directions have semantics

● CS terms: connections = “edges”, lines or arcs
● Sources: nodes with no incoming connections

● Sinks: nodes with no outgoing connections

Directed Acyclic Data Graph

● No cycles
● no non-empty path that starts on one node and

ends on another

Directed Cyclic Graph

● Cycles permitted
● CS and math theory doesn't have as much to

say about these

What am I talking about?

● Nodes are:
● tracks, busses,
● tone generators,
● FX plugins
● controls
● Connections are ...
● Cycles are ... ???

So ...

● Any sufficiently complex realtime audio software
contains a series of nodes connected together to

form a directed graph
● Execute the software by running one node after

another.
● How to determine the order?

Graph Ordering/Sorting

● Any DAG has 1 or more “topological sorts”
● A list of the nodes in which each one comes

before any other that it is connected to
● Many DAG's do not have unique sorting order

How to sort a DAG

void
jack_sort_graph (jack_engine_t *engine)
{

/* called, obviously, must hold engine->client_lock */

VERBOSE (engine, "++ jack_sort_graph");
engine->clients = jack_slist_sort (engine->clients,

 (JCompareFunc) jack_client_sort);
jack_compute_all_port_total_latencies (engine);
jack_rechain_graph (engine);
VERBOSE (engine, "-- jack_sort_graph");

}

Comparing two nodes
static int
jack_client_sort (jack_client_internal_t *a, jack_client_internal_t *b)
{

/* drivers are forced to the front, ie considered as sources
 rather than sinks for purposes of the sort */

if (jack_client_feeds_transitive (a, b) ||
 (a->control->type == ClientDriver &&
 b->control->type != ClientDriver)) {

return -1;
} else if (jack_client_feeds_transitive (b, a) ||

 (b->control->type == ClientDriver &&
 a->control->type != ClientDriver)) {
return 1;

} else {
return 0;

}
}

Wait a minute!

 What about cycles (feedback)?

Take a deep breath
● Each node has a special list of other nodes that

it “feeds”
● List does not include connections to itself, or

connections to sources or sinks
● If a connection is added that creates feedback
between A and B (ie. There was already a path
from A > B, and we add B > A) then instead of A

being on B's list, A will be B's.
● These 3 conditions guarantee an acyclic graph
● This allows us to use regular sorting algorithms
● Thank you to CS professors everywhere and to

Simon Jenkins

Problems with Graph Sorting

● Relatively expensive compared to
adding/removing graph nodes

● May be replicated by node owners (e.g. ardour)
that have internal ordering

● Feedback cycles need special handling

Audio “Paralellism”

● Many audio graphs are 100% serial
● Even the ones with some parallel aspects have

serial aspects too

Parallel Graph Execution

Activation Flow

● Don't compute order before execution
● Determine order “on the fly”

Activation Flow 2

● For each client, counter = number of input ports
● Find all graph node owners with no input ports

or no connected input ports
● Execute these graph nodes

● Mark them as “executed”

Activation Flow 3

● Each just executed client decrements the
counter on every other client connected to its

outputs (1 per port connection)
● Find all clients where the counter is zero (and

they have not executed already)
● Repeat cycle until there are no waiting clients

left.

Benefits

● Cheap when changing the graph, low cost at
graph execution time

●

Artificial Parallelism

● Slicing up each block of audio

Data Parallelism

● Same Instruction Multiple Data = SIMD
● Peak computation

● Gain & Pan

gain computation

for (n = 0; n < nframes; ++n) {

 audio_buffer[n] *= gain;

}

● 1 instruction cycle per audio sample (ignoring
load/store to memory)

● Can we do better?

Peak Computation

for (n = 0; n < frames; ++n) {

 if (audio_buffer[n] > current_peak_max) {

 current_peak_max = audio_buffer[n];

 }

 if (audio_buffer[n] < current_peak_max) {

 current_peak_min = audio_buffer[n];

 }

}

● 2 conditionals per sample

Peak Computation 2

for (n = 0; n < nframes; ++n) {

 float abs_sample = fabs (audiobuffer[n]);

 if (abs_sample > current_peak) {

 current_peak = abs_sample;

 }

}

● Looks better – 1 conditional per sample
● How fast is fabs?

Peak Computation 3

current_peak = max_abs_of (audio_buffer, nframes);

● Would be nice!
● How about:
current_peak = max_abs_of (audio_buffer, 4);

● This can be done ...
● SSE/SSE2 processing unit on modern intel

processors operates on 4 values at one time
● Old Altivec late-model PPC macs did the same
● Provides a variety of useful and very complicated

operations

Peak Computation 4

for (n = 0; n < nframes; n += 4) {

 max_abs_of (&audio_buffer[n], current_peak);

}

● This is illustrative, not actual code
● Handling non-multiple of 4 can be an issue
● At least 4x faster
● Can be 10-30x faster in the real world

Gain Computation Revisited
for (n = 0; n < nframes; n += 4) {

 sse_multiply (&audio_buffer[n], gain);

}

● This is not threads and it doesn't even look
parallel

● It is parallel and its very very powerful
● With some audio block sizes, this can save

30% of the execution time in a program like a
DAW.

● SSE ops are often faster than main CPU
equivalent

SIMD/SSE the bad news

● Very hard to understand documentation unless
you have a lot of experience with low level

processor architecture
● XMM “intrinsics” - compiler provided functions

hide some of the complexity but not all
● When performance matters, its worth using this

stuff

Next Week

● Time: synchronization, DLL's, “now”, latency
● 1 or 2 more project presentations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

