
  

DAW Design & Implementation #5

Parallel Algorithms for Realtime Audio



  

Plan of Attack

● Presentation on CraSynth by Lukas 
Kaser/Andreas Rothe

● ...waffle...
● High level task parallelism
● Low level data parallelism



  

High Level Task Parallelism

● Task parallelism: different operations performed 
on distinct data in parallel

● Data parallelism: same operation performed on 
“related” data in parallel



  

Directed Data graph

● Nodes or vertices connected together
● Directions have semantics

● CS terms: connections = “edges”, lines or arcs
● Sources: nodes with no incoming connections

● Sinks: nodes with no outgoing connections



  

Directed Acyclic Data Graph

● No cycles
● no non-empty path that starts on one node and 

ends on another



  

Directed Cyclic Graph

● Cycles permitted
● CS and math theory doesn't have as much to 

say about these



  

What am I talking about?

● Nodes are: 
● tracks, busses, 
● tone generators, 
● FX plugins ....
● controls
● Connections are ... 
● Cycles are ... ???



  

So ... 

● Any sufficiently complex realtime audio software 
contains a series of nodes connected together to 

form a directed graph
● Execute the software by running one node after 

another.
● How to determine the order?



  

Graph Ordering/Sorting

● Any DAG has 1 or more “topological sorts”
● A list of the nodes in which each one comes 

before any other that it is connected to
● Many DAG's do not have unique sorting order



  

How to sort a DAG

 
void
jack_sort_graph (jack_engine_t *engine)
{

/* called, obviously, must hold engine->client_lock */

VERBOSE (engine, "++ jack_sort_graph");
engine->clients = jack_slist_sort (engine->clients,

   (JCompareFunc) jack_client_sort);
jack_compute_all_port_total_latencies (engine);
jack_rechain_graph (engine);
VERBOSE (engine, "-- jack_sort_graph");

}



  

Comparing two nodes
static int 
jack_client_sort (jack_client_internal_t *a, jack_client_internal_t *b)
{

/* drivers are forced to the front, ie considered as sources
   rather than sinks for purposes of the sort */

if (jack_client_feeds_transitive (a, b) ||
    (a->control->type == ClientDriver &&
     b->control->type != ClientDriver)) {

return -1;
} else if (jack_client_feeds_transitive (b, a) ||

   (b->control->type == ClientDriver &&
    a->control->type != ClientDriver)) {
return 1;

} else {
return 0;

}
}



  

Wait a minute!

 What about cycles (feedback)?



  

Take a deep breath
● Each node has a special list of other nodes that 

it “feeds”
● List does not include connections to itself, or 

connections to sources or sinks
● If a connection is added that creates feedback 
between A and B (ie. There was already a path 
from A > B, and we add B > A) then instead of A 

being on B's list, A will be B's.
● These 3 conditions guarantee an acyclic graph
● This allows us to use regular sorting algorithms
● Thank you to CS professors everywhere and to 

Simon Jenkins



  

Problems with Graph Sorting

● Relatively expensive compared to 
adding/removing graph nodes

● May be replicated by node owners (e.g. ardour) 
that have internal ordering

● Feedback cycles need special handling



  

Audio “Paralellism”

● Many audio graphs are 100% serial
● Even the ones with some parallel aspects have 

serial aspects too



  

Parallel Graph Execution



  

Activation Flow

● Don't compute order before execution
● Determine order “on the fly”



  

Activation Flow 2

● For each client, counter = number of input ports
● Find all graph node owners with no input ports 

or no connected input ports
● Execute these graph nodes

● Mark them as “executed”



  

Activation Flow 3

● Each just executed client decrements the 
counter on every other client connected to its 

outputs (1 per port connection)
● Find all clients where the counter is zero (and 

they have not executed already)
● Repeat cycle until there are no waiting clients 

left.



  

Benefits

● Cheap when changing the graph, low cost at 
graph execution time

● 



  

Artificial Parallelism

● Slicing up each block of audio



  



  



  



  



  



  



  



  



  



  

Data Parallelism

● Same Instruction Multiple Data = SIMD
● Peak computation

● Gain & Pan



  

gain computation

for (n = 0; n < nframes; ++n) {

         audio_buffer[n] *= gain;

}

● 1 instruction cycle per audio sample (ignoring 
load/store to memory)

● Can we do better?



  

Peak Computation

for (n = 0; n < frames; ++n) {

      if (audio_buffer[n] > current_peak_max) {

             current_peak_max = audio_buffer[n];

      }

      if (audio_buffer[n] < current_peak_max) {

            current_peak_min = audio_buffer[n];

     }

}

● 2 conditionals per sample



  

Peak Computation 2

for (n = 0; n < nframes; ++n) {

 float abs_sample = fabs (audiobuffer[n]);

       if (abs_sample > current_peak) {

           current_peak = abs_sample;

       }

}

● Looks better – 1 conditional per sample
● How fast is fabs?



  

Peak Computation 3

current_peak = max_abs_of (audio_buffer, nframes);

●  Would be nice!
● How about:
current_peak = max_abs_of (audio_buffer, 4);

● This can be done ...
● SSE/SSE2 processing unit on modern intel 

processors operates on 4 values at one time
● Old Altivec late-model PPC macs did the same
● Provides a variety of useful and very complicated 

operations



  

Peak Computation 4

for (n = 0; n < nframes; n += 4) {

       max_abs_of (&audio_buffer[n], current_peak);

}

● This is illustrative, not actual code
● Handling non-multiple of 4 can be an issue
● At least 4x faster
● Can be 10-30x faster in the real world



  

Gain Computation Revisited
for (n = 0; n < nframes; n += 4) {

        sse_multiply (&audio_buffer[n], gain);

}

● This is not threads and it doesn't even look 
parallel

● It is parallel and its very very powerful
● With some audio block sizes, this can save 

30% of the execution time in a program like a 
DAW.

● SSE ops are often faster than main CPU 
equivalent



  

SIMD/SSE the bad news

● Very hard to understand documentation unless 
you have a lot of experience with low level 

processor architecture
● XMM “intrinsics” - compiler provided functions 

hide some of the complexity but not all
● When performance matters, its worth using this 

stuff



  

Next Week

● Time: synchronization, DLL's, “now”, latency
● 1 or 2 more project presentations
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